Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.864
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Front Endocrinol (Lausanne) ; 15: 1379231, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38638139

RESUMO

Receptor tyrosine kinases (RTKs) mediate the actions of growth factors in metazoans. In decapod crustaceans, RTKs are implicated in various physiological processes, such molting and growth, limb regeneration, reproduction and sexual differentiation, and innate immunity. RTKs are organized into two main types: insulin receptors (InsRs) and growth factor receptors, which include epidermal growth factor receptor (EGFR), fibroblast growth factor receptor (FGFR), vascular endothelial growth factor receptor (VEGFR), and platelet-derived growth factor receptor (PDGFR). The identities of crustacean RTK genes are incomplete. A phylogenetic analysis of the CrusTome transcriptome database, which included all major crustacean taxa, showed that RTK sequences segregated into receptor clades representing InsR (72 sequences), EGFR (228 sequences), FGFR (129 sequences), and PDGFR/VEGFR (PVR; 235 sequences). These four receptor families were distinguished by the domain organization of the extracellular N-terminal region and motif sequences in the protein kinase catalytic domain in the C-terminus or the ligand-binding domain in the N-terminus. EGFR1 formed a single monophyletic group, while the other RTK sequences were divided into subclades, designated InsR1-3, FGFR1-3, and PVR1-2. In decapods, isoforms within the RTK subclades were common. InsRs were characterized by leucine-rich repeat, furin-like cysteine-rich, and fibronectin type 3 domains in the N-terminus. EGFRs had leucine-rich repeat, furin-like cysteine-rich, and growth factor IV domains. N-terminal regions of FGFR1 had one to three immunoglobulin-like domains, whereas FGFR2 had a cadherin tandem repeat domain. PVRs had between two and five immunoglobulin-like domains. A classification nomenclature of the four RTK classes, based on phylogenetic analysis and multiple sequence alignments, is proposed.


Assuntos
Furina , Insulina , Furina/genética , Filogenia , Insulina/genética , Transcriptoma , Cisteína , Leucina/genética , Fator A de Crescimento do Endotélio Vascular/genética , Receptores Proteína Tirosina Quinases/genética , Receptores Proteína Tirosina Quinases/metabolismo , Receptores ErbB/metabolismo , Receptores de Fatores de Crescimento de Fibroblastos/genética , Receptores de Fatores de Crescimento de Fibroblastos/metabolismo , Perfilação da Expressão Gênica , Tirosina
2.
Diabetes Obes Metab ; 26(4): 1443-1453, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38240050

RESUMO

AIM: To assess the sex- and time-specific causal effects of obesity-related anthropometric traits on glycaemic traits. MATERIALS AND METHODS: We used univariate and multivariate Mendelian randomization to assess the causal associations of anthropometric traits (gestational variables, birth weight, childhood body mass index [BMI], BMI, waist-to-hip ratio [WHR], BMI-adjusted WHR [WHRadj BMI]) with fasting glucose and insulin in Europeans from the Early Growth Genetics Consortium (n ≤ 298 142), the UK Biobank, the Genetic Investigation of Anthropometric Traits Consortium (n ≤ 697 734; females: n ≤ 434 794; males: n ≤ 374 754) and the Meta-Analyses of Glucose and Insulin-related traits Consortium (n ≤ 151 188; females: n ≤ 73 089; males: n ≤ 67 506), adjusting for maternal genetic effects, smoking, alcohol consumption, and age at menarche. RESULTS: We observed a null association for gestational variables, a negative association for birth weight, and positive associations for childhood BMI and adult traits (BMI, WHR, and WHRadj BMI). In female participants, increased birth weight causally decreased fasting insulin (betaIVW , -0.07, 95% confidence interval [CI] -0.11 to -0.03; p = 1.92 × 10-3 ), but not glucose levels, which was annulled by adjusting for age at menarche. In male participants, increased birth weight causally decreased fasting glucose (betainverse-variance-weighted (IVW) , -0.07, 95% CI -0.11 to -0.03; p = 3.22 × 10-4 ), but not insulin levels. In time-specific analyses, independent effects of birth weight were absent in female participants, and were more pronounced in male participants. Independent effects of childhood BMI were attenuated in both sexes; independent effects of adult traits differed by sex. CONCLUSIONS: Our findings provide evidence for causal and independent effects of sex- and time-specific anthropometric traits on glycaemic variables, and highlight the importance of considering multiple obesity exposures at different time points in the life course.


Assuntos
Análise da Randomização Mendeliana , Obesidade , Adulto , Humanos , Masculino , Feminino , Peso ao Nascer/genética , Obesidade/epidemiologia , Obesidade/genética , Obesidade/complicações , Índice de Massa Corporal , Insulina/genética , Glucose , Estudo de Associação Genômica Ampla , Polimorfismo de Nucleotídeo Único
3.
J Obes ; 2024: 7529779, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38250713

RESUMO

Obesity and diabetes are a problem of modern medicine. Although the environmental factors contributing to the development of these diseases are widely known, research into genetic factors is still ongoing. At the same time, the role of inflammation in the pathophysiology of obesity and diabetes is increasingly emphasized. Therefore, the purpose of this study was to investigate the influence of two selected polymorphisms (rs1800795 and rs3842729) on the development of obesity and type 2 diabetes. In this study, 118 participants were examined, including a control group (nonobese and nondiabetic group), an obese group, and a diabetic group. Genotype analysis was performed using the PCR-RFLP method. It has been shown that in patients with the G/G genotype within the rs1800795 polymorphism (IL6), the chance of developing type 2 diabetes is several times lower compared to patients with the G/C and C/C genotypes. However, the rs3842729 polymorphism (INS) does not directly affect the risk of obesity or type 2 diabetes (T2D), although elevated insulin concentrations have been observed in obese and diabetic patients. These results confirm the impact of the rs1800795 polymorphism on the development of diabetes; however, this relationship is more complex and requires further research on other factors.


Assuntos
Diabetes Mellitus Tipo 2 , Insulina , Interleucina-6 , Obesidade , Humanos , Diabetes Mellitus Tipo 2/genética , Glucagon , Insulina/genética , Interleucina-6/genética , Obesidade/genética , Polimorfismo de Nucleotídeo Único
4.
Genome Med ; 15(1): 108, 2023 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-38049854

RESUMO

BACKGROUND: In vitro and in vivo studies have shown that certain cytokines and hormones may play a role in the development and progression of type 2 diabetes (T2D). However, studies on their role in T2D in humans are scarce. We evaluated associations between 11 circulating cytokines and hormones with T2D among a population of sub-Saharan Africans and tested for causal relationships using Mendelian randomization (MR) analyses. METHODS: We used logistic regression analysis adjusted for age, sex, body mass index, and recruitment country to regress levels of 11 cytokines and hormones (adipsin, leptin, visfatin, PAI-1, GIP, GLP-1, ghrelin, resistin, IL-6, IL-10, IL-1RA) on T2D among Ghanaians, Nigerians, and Kenyans from the Africa America Diabetes Mellitus study including 2276 individuals with T2D and 2790 non-T2D individuals. Similar linear regression models were fitted with homeostatic modelling assessments of insulin sensitivity (HOMA-S) and ß-cell function (HOMA-B) as dependent variables among non-T2D individuals (n = 2790). We used 35 genetic variants previously associated with at least one of these 11 cytokines and hormones among non-T2D individuals as instrumental variables in univariable and multivariable MR analyses. Statistical significance was set at 0.0045 (0.05/11 cytokines and hormones). RESULTS: Circulating GIP and IL-1RA levels were associated with T2D. Nine of the 11 cytokines and hormones (exceptions GLP-1 and IL-6) were associated with HOMA-S, HOMA-B, or both among non-T2D individuals. Two-stage least squares MR analysis provided evidence for a causal effect of GIP and IL-RA on HOMA-S and HOMA-B in multivariable analyses (GIP ~ HOMA-S ß = - 0.67, P-value = 1.88 × 10-6 and HOMA-B ß = 0.59, P-value = 1.88 × 10-5; IL-1RA ~ HOMA-S ß = - 0.51, P-value = 8.49 × 10-5 and HOMA-B ß = 0.48, P-value = 5.71 × 10-4). IL-RA was partly mediated via BMI (30-34%), but GIP was not. Inverse variance weighted MR analysis provided evidence for a causal effect of adipsin on T2D (multivariable OR = 1.83, P-value = 9.79 × 10-6), though these associations were not consistent in all sensitivity analyses. CONCLUSIONS: The findings of this comprehensive MR analysis indicate that circulating GIP and IL-1RA levels are causal for reduced insulin sensitivity and increased ß-cell function. GIP's effect being independent of BMI suggests that circulating levels of GIP could be a promising early biomarker for T2D risk. Our MR analyses do not provide conclusive evidence for a causal role of other circulating cytokines in T2D among sub-Saharan Africans.


Assuntos
Diabetes Mellitus Tipo 2 , Polipeptídeo Inibidor Gástrico , Resistência à Insulina , Proteína Antagonista do Receptor de Interleucina 1 , Humanos , População Africana , Glicemia , Fator D do Complemento/genética , Diabetes Mellitus Tipo 2/complicações , Estudo de Associação Genômica Ampla , Gana , Peptídeo 1 Semelhante ao Glucagon , Insulina/genética , Resistência à Insulina/genética , Proteína Antagonista do Receptor de Interleucina 1/genética , Interleucina-6/genética , Quênia , Análise da Randomização Mendeliana , Fatores de Risco , Nigéria , Polipeptídeo Inibidor Gástrico/genética
5.
Zhejiang Da Xue Xue Bao Yi Xue Ban ; 52(6): 732-737, 2023 Dec 13.
Artigo em Inglês, Chinês | MEDLINE | ID: mdl-38105674

RESUMO

A 2-year-old boy was admitted to Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine in Nov 30th, 2018, due to polydipsia, polyphagia, polyuria accompanied with increased glucose levels for more than 2 weeks. He presented with symmetrical short stature [height 81 cm (-2.2 SD), weight 9.8 kg (-2.1 SD), body mass index 14.94 kg/m2 (P10-P15)], and with no special facial or physical features. Laboratory results showed that the glycated hemoglobin A1c was 14%, the fasting C-peptide was 0.3 ng/mL, and the islet autoantibodies were all negative. Oral glucose tolerance test showed significant increases in both fasting and postprandial glucose, but partial islet functions remained (post-load C-peptide increased 1.43 times compared to baseline). A heterozygous variant c.1366C>T (p.R456C) was detected in GATA6 gene, thereby the boy was diagnosed with a specific type of diabetes mellitus. The boy had congenital heart disease and suffered from transient hyperosmolar hyperglycemia after a patent ductus arteriosus surgery at 11 months of age. Insulin replacement therapy was prescribed, but without regular follow-up thereafter. The latest follow-up was about 3.5 years after the diagnosis of diabetes when the child was 5 years and 11 months old, with the fasting blood glucose of 6.0-10.0 mmol/L, and the 2 h postprandial glucose of 17.0-20.0 mmol/L.


Assuntos
Diabetes Mellitus Tipo 2 , Masculino , Criança , Humanos , Pré-Escolar , Lactente , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/complicações , Mutação de Sentido Incorreto , Peptídeo C/genética , China , Insulina/genética , Glucose , Glicemia , Fator de Transcrição GATA6/genética
6.
J Evol Biol ; 36(11): 1641-1648, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37885148

RESUMO

Nutrition-dependent growth of sexual traits is a major contributor to phenotypic diversity, and a large body of research documents insulin signalling as a major regulator of nutritional plasticity. However, findings across studies raise the possibility that the role of individual components within the insulin signalling pathway diverges in function among traits and taxa. Here, we use RNAi-mediated transcript depletion in the gazelle dung beetle to investigate the functions of forkhead box O (Foxo) and two paralogs of the insulin receptor (InR1 and InR2) in shaping nutritional plasticity in polyphenic male head horns, exaggerated fore legs, and weakly nutrition-responsive genitalia. Our functional genetic manipulations led to three main findings: FoxoRNAi reduced the length of exaggerated head horns in large males, while neither InR1 nor InR2 knock-downs resulted in measurable horn phenotypes. These results are similar to those documented previously for another dung beetle (Onthophagus taurus), but in stark contrast to findings in rhinoceros beetles. Secondly, knockdown of Foxo, InR1, and InR2 led to an increase in the intercept or slope of the scaling relationship of genitalia size. These findings are in contrast even to results documented previously for O. taurus. Lastly, while FoxoRNAi reduces male forelegs in D. gazella and O. taurus, the effects of InR1 and InR2 knockdowns diverged across dung beetle species. Our results add to the growing body of literature indicating that despite insulin signalling's conserved role as a regulator of nutritional plasticity, the functions of its components may diversify among traits and species, potentially fuelling the evolution of scaling relationships.


Assuntos
Besouros , Animais , Masculino , Besouros/fisiologia , Insulina/genética , Insulina/metabolismo , Fenótipo , Caracteres Sexuais
7.
Genes (Basel) ; 14(10)2023 09 27.
Artigo em Inglês | MEDLINE | ID: mdl-37895232

RESUMO

Large musculoaponeurotic fibrosarcoma (MAF) transcription factors contain acidic, basic, and leucine zipper regions. Four types of MAF have been elucidated in mice and humans, namely c-MAF, MAFA, MAFB, and NRL. This review aimed to elaborate on the functions of MAF transcription factors that have been studied in vivo so far, as well as describe the pathology of human patients and corresponding mouse models with c-MAF, MAFA, and MAFB point mutations. To identify the functions of MAF transcription factors in vivo, we generated genetically modified mice lacking c-MAF, MAFA, and MAFB and analyzed their phenotypes. Further, in recent years, c-MAF, MAFA, and MAFB have been identified as causative genes underpinning many rare diseases. Careful observation of human patients and animal models is important to examine the pathophysiological mechanisms underlying these conditions for targeted therapies. Murine models exhibit phenotypes similar to those of human patients with c-MAF, MAFA, and MAFB mutations. Therefore, generating these animal models emphasizes their usefulness for research uncovering the pathophysiology of point mutations in MAF transcription factors and the development of etiology-based therapies.


Assuntos
Fatores de Transcrição Maf Maior , Fatores de Transcrição , Humanos , Camundongos , Animais , Fatores de Transcrição/genética , Fatores de Transcrição Maf Maior/genética , Fator de Transcrição MafB/genética , Insulina/genética , Mutação Puntual
8.
Curr Opin Genet Dev ; 82: 102099, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37611379

RESUMO

The pancreatic ß cell, which produces insulin, is a terminally differentiated cell type that divides rarely. Consequently, the regenerative ability of ß cells is limited and irreversible diabetes occurs after severe loss of ß-cell function. In view of such poor regenerative capacity, considerable research efforts have been made to promote the expansion of functional insulin-producing cells as a regenerative therapy for diabetes. Here, we discuss recent findings regarding the robust expansion of functional mature islet cells both in vivo and ex vivo through MYCL-mediated reprogramming. We also describe the potential prospects for the application of reprogramming technologies to regenerative therapy and rejuvenation of islet cells.


Assuntos
Ilhotas Pancreáticas , Rejuvenescimento , Células Epiteliais , Insulina/genética , Diferenciação Celular/genética
9.
Nat Struct Mol Biol ; 30(9): 1260-1264, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37488356

RESUMO

Control of insulin mRNA translation is crucial for energy homeostasis, but the mechanisms remain largely unknown. We discovered that insulin mRNAs across invertebrates, vertebrates and mammals feature the modified base N6-methyladenosine (m6A). In flies, this RNA modification enhances insulin mRNA translation by promoting the association of the transcript with polysomes. Depleting m6A in Drosophila melanogaster insulin 2 mRNA (dilp2) directly through specific 3' untranslated region (UTR) mutations, or indirectly by mutating the m6A writer Mettl3, decreases dilp2 protein production, leading to aberrant energy homeostasis and diabetic-like phenotypes. Together, our findings reveal adenosine mRNA methylation as a key regulator of insulin protein synthesis with notable implications for energy balance and metabolic disease.


Assuntos
Drosophila melanogaster , Insulina , Animais , Metilação , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Insulina/genética , Insulina/metabolismo , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Metiltransferases/genética , Metiltransferases/metabolismo , Adenosina/genética , Adenosina/metabolismo , Mamíferos/genética
10.
Hum Gene Ther ; 34(15-16): 732-741, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37433214

RESUMO

The study was designed to determine whether urocortin 2 (Ucn2) gene transfer is as safe and effective as metformin in insulin-resistant mice. Four groups of insulin-resistant db/db mice and a nondiabetic group were studied: (1) metformin; (2) Ucn2 gene transfer; (3) metformin + Ucn2 gene transfer; (4) saline; and (5) nondiabetic mice. After completion of the 15-week protocol, glucose disposal was quantified, safety assessed, and gene expression documented. Ucn2 gene transfer was superior to metformin, providing reductions in fasting glucose and glycated hemoglobin and enhanced glucose tolerance. The combination of metformin + Ucn2 gene transfer provided no better glucose control than Ucn2 gene transfer alone and was not associated with hypoglycemia. Metformin alone, Ucn2 gene transfer alone, and metformin + Ucn2 gene transfer together reduced fatty infiltration of the liver. Serum alanine transaminase concentration was elevated in all db/db groups (vs. nondiabetic controls), but the metformin + Ucn2 gene transfer combined group had the lowest alanine transaminase levels. No group differences in fibrosis were detected. In a hepatoma cell line, activation of AMP kinase showed a rank order of combined metformin + Ucn2 peptide > Ucn2 peptide > metformin. We conclude (1) The combination of metformin + Ucn2 gene transfer does not result in hypoglycemia. (2) Ucn2 gene transfer alone provides superior glucose disposal versus metformin alone. (3) The combination of Ucn2 gene transfer and metformin is safe and has additive effects in reducing serum alanine transaminase concentration, activating AMP kinase activity, and increasing Ucn2 expression, but is no more efficacious than Ucn2 gene transfer alone in reducing hyperglycemia. These data indicate that Ucn2 gene transfer is more effective than metformin in the db/db model of insulin resistance and combined treatment with metformin + Ucn2 gene transfer appears to have favorable effects on liver function and Ucn2 expression.


Assuntos
Hipoglicemia , Metformina , Camundongos , Animais , Glucose/metabolismo , Insulina/genética , Metformina/farmacologia , Urocortinas/genética , Urocortinas/farmacologia , Adenilato Quinase , Alanina Transaminase
11.
Gene ; 878: 147576, 2023 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-37336273

RESUMO

The hypoglycemia induced by insulin hypersecretion in congenital hyperinsulinemia (CHI), a rare life-threatening condition can lead to irreversible brain damage in neonates. Inactivating mutations in the genes encoding KATP channel (ABCC8 and KCNJ11) as well as HNF4A, HNF1A, HADH, UCP2, and activating mutations in GLUD1, GCK, and SLC16A1 have been identified as causal. A 3-month-old male infant presenting tonic-clonic seizures and hyperinsulinemia was clinically assessed and subjected to genetic analysis. Besides the index patient, his parents were clinically investigated, and a detailed family history was also recorded. The laboratory investigations and the genetic test results of the parents were compared with the index patient. The biochemical and hormonal profile of the patient confirmed his suffering from CHI and did not respond to diazoxide treatment. The genetic testing revealed that the subject harbored a novel homozygous missense mutation in the KCNJ11 gene, (c.107T>A, p.Val36Glu.). The bioinformatic analysis revealed that valine is highly conserved and predicted that the variant allele (p.Val36Glu) is likely pathogenic and causal for CHI. Parents were heterozygous carriers and did not report any abnormal metabolic profile. Identification of such mutations is critical and likely to change the therapeutic interventions for such patients in the future.


Assuntos
Hiperinsulinismo Congênito , Humanos , Lactente , Masculino , Hiperinsulinismo Congênito/genética , Hiperinsulinismo Congênito/tratamento farmacológico , Diazóxido/uso terapêutico , Heterozigoto , Insulina/genética , Mutação , Receptores de Sulfonilureias/genética
12.
J Assist Reprod Genet ; 40(8): 1983-1993, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37358742

RESUMO

PURPOSE: Polycystic ovary syndrome (PCOS) is one of the leading causes of infertility in women of childbearing age, and many patients with PCOS have obesity and insulin resistance (IR). Although obesity is related to an increased risk of IR, in clinical practice, PCOS patients exhibit different effects on improving insulin sensitivity after weight loss. Therefore, in the present study, we aimed to examine the moderating effect of polymorphisms of mtDNA in the D-loop region on the associations of body mass index (BMI) with the homeostasis model assessment of insulin resistance index (HOMA-IR) and pancreatic ß cell function index (HOMA-ß) among women with PCOS. METHODS: Based on a cross-sectional study, women with PCOS were recruited from the Reproductive Center of the First Affiliated Hospital of Anhui Medical University from 2015 to 2018. A total of 520 women who were diagnosed with PCOS based on the revised 2003 Rotterdam criteria were included in the study. Peripheral blood was collected from these patients, followed by DNA extraction, PCR amplification, and sequencing at baseline. HOMA-IR and HOMA-ß were calculated according to blood glucose-related indices. Moderating effect models were performed with BMI as an independent variable, polymorphisms of mtDNA in the D-loop region as moderators, and ln (HOMA-IR) and ln (HOMA-ß) as dependent variables. To verify the stability of moderating effect, sensitivity analysis was performed with the quantitative insulin sensitivity check index (QUICKI), fasting plasma glucose/fasting insulin (G/I), and fasting insulin as dependent variables. RESULTS: BMI was positively associated with ln (HOMA-IR) and ln (HOMA-ß) (ß = 0.090, p < 0.001; ß = 0.059, p < 0.001, respectively), and the relationship between BMI and ln (HOMA-IR) or ln (HOMA-ß) was moderated by the polymorphisms of mtDNA in the D-loop region. Compared with the respective wild-type, the variant -type of m.16217 T > C enhanced the association between BMI and HOMA-IR, while the variant-type of m.16316 A > G weakened the association. On the other hand, the variant-type of m.16316 A > G and m.16203 A > G weakened the association between BMI and HOMA-ß, respectively. The results of QUICKI and fasting insulin as dependent variables were generally consistent with HOMA-IR, and the results of G/I as dependent variables were generally consistent with HOMA-ß. CONCLUSION: Polymorphisms of mtDNA in the D-loop region moderate the associations of BMI with HOMA-IR and HOMA-ß among women with PCOS.


Assuntos
Resistência à Insulina , Síndrome do Ovário Policístico , Feminino , Humanos , Resistência à Insulina/genética , Índice de Massa Corporal , Estudos Transversais , DNA Mitocondrial/genética , Glicemia/genética , Insulina/genética , Obesidade/complicações
13.
Reprod Biol Endocrinol ; 21(1): 43, 2023 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-37170094

RESUMO

Endometrial epithelia are known to harbor cancer driver mutations in the absence of any pathologies, including mutations in PIK3CA. Insulin plays an important role in regulating uterine metabolism during pregnancy, and hyperinsulinemia is associated with conditions impacting fertility. Hyperinsulinemia also promotes cancer, but the direct action of insulin on mutated endometrial epithelial cells is unknown. Here, we treated 12Z endometriotic epithelial cells carrying the PIK3CAH1047R oncogene with insulin and examined transcriptomes by RNA-seq. While cells naively responded to insulin, the magnitude of differential gene expression (DGE) was nine times greater in PIK3CAH1047R cells, representing a synergistic effect between insulin signaling and PIK3CAH1047R expression. Interferon signaling and the unfolded protein response (UPR) were enriched pathways among affected genes. Insulin treatment in wild-type cells activated normal endoplasmic reticulum stress (ERS) response programs, while PIK3CAH1047R cells activated programs necessary to avoid ERS-induced apoptosis. PIK3CAH1047R expression alone resulted in overexpression (OE) of Viperin (RSAD2), which is involved in viral response and upregulated in the endometrium during early pregnancy. The transcriptional changes induced by insulin in PIK3CAH1047R cells were rescued by knockdown of Viperin, while Viperin OE alone was insufficient to induce a DGE response to insulin, suggesting that Viperin is necessary but not sufficient for the synergistic effect of PIK3CAH1047R and insulin treatment. We identified interferon signaling, viral response, and protein targeting pathways that are induced by insulin but dependent on Viperin in PIK3CAH1047R mutant cells. These results suggest that response to insulin signaling is altered in mutated endometriotic epithelial cells.


Assuntos
Hiperinsulinismo , Neoplasias , Feminino , Humanos , Classe I de Fosfatidilinositol 3-Quinases/genética , Classe I de Fosfatidilinositol 3-Quinases/metabolismo , Células Epiteliais/metabolismo , Insulina/farmacologia , Insulina/genética , Interferons/genética , Mutação , Endométrio/metabolismo
14.
Sci Rep ; 13(1): 6767, 2023 04 25.
Artigo em Inglês | MEDLINE | ID: mdl-37185283

RESUMO

Chronic hepatitis C (CHC) is associated with the development of metabolic disorders, including both hepatic and extra-hepatic insulin resistance (IR). Here, we aimed at identifying liver-derived factor(s) potentially inducing peripheral IR and uncovering the mechanisms whereby HCV can regulate the action of these factors. We found ANGPTL4 (Angiopoietin Like 4) mRNA expression levels to positively correlate with HCV RNA (r = 0.46, p < 0.03) and HOMA-IR score (r = 0.51, p = 0.01) in liver biopsies of lean CHC patients. Moreover, we observed an upregulation of ANGPTL4 expression in two models recapitulating HCV-induced peripheral IR, i.e. mice expressing core protein of HCV genotype 3a (HCV-3a core) in hepatocytes and hepatoma cells transduced with HCV-3a core. Treatment of differentiated myocytes with recombinant ANGPTL4 reduced insulin-induced Akt-Ser473 phosphorylation. In contrast, conditioned medium from ANGPTL4-KO hepatoma cells prevented muscle cells from HCV-3a core induced IR. Treatment of HCV-3a core expressing HepG2 cells with PPARγ antagonist resulted in a decrease of HCV-core induced ANGPTL4 upregulation. Together, our data identified ANGPTL4 as a potential driver of HCV-induced IR and may provide working hypotheses aimed at understanding the pathogenesis of IR in the setting of other chronic liver disorders.


Assuntos
Carcinoma Hepatocelular , Hepatite C Crônica , Resistência à Insulina , Neoplasias Hepáticas , Animais , Camundongos , Carcinoma Hepatocelular/genética , Genótipo , Hepacivirus/genética , Hepatite C Crônica/patologia , Insulina/genética , Resistência à Insulina/fisiologia , Neoplasias Hepáticas/genética
15.
Diabetes Care ; 46(6): 1265-1270, 2023 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-37104866

RESUMO

OBJECTIVE: The Rare and Atypical Diabetes Network (RADIANT) will perform a study of individuals and, if deemed informative, a study of their family members with uncharacterized forms of diabetes. RESEARCH DESIGN AND METHODS: The protocol includes genomic (whole-genome [WGS], RNA, and mitochondrial sequencing), phenotypic (vital signs, biometric measurements, questionnaires, and photography), metabolomics, and metabolic assessments. RESULTS: Among 122 with WGS results of 878 enrolled individuals, a likely pathogenic variant in a known diabetes monogenic gene was found in 3 (2.5%), and six new monogenic variants have been identified in the SMAD5, PTPMT1, INS, NFKB1, IGF1R, and PAX6 genes. Frequent phenotypic clusters are lean type 2 diabetes, autoantibody-negative and insulin-deficient diabetes, lipodystrophic diabetes, and new forms of possible monogenic or oligogenic diabetes. CONCLUSIONS: The analyses will lead to improved means of atypical diabetes identification. Genetic sequencing can identify new variants, and metabolomics and transcriptomics analysis can identify novel mechanisms and biomarkers for atypical disease.


Assuntos
Diabetes Mellitus Tipo 2 , Humanos , Diabetes Mellitus Tipo 2/diagnóstico , Insulina/genética , Família , Insulina Regular Humana , Sequenciamento de Nucleotídeos em Larga Escala/métodos , PTEN Fosfo-Hidrolase/genética
16.
Clin Epigenetics ; 15(1): 21, 2023 02 11.
Artigo em Inglês | MEDLINE | ID: mdl-36765383

RESUMO

BACKGROUND: Accumulation of saturated fatty acids (SFAs) in the liver is known to induce hepatic steatosis and inflammation causing non-alcoholic fatty liver disease (NAFLD) and non-alcoholic steatohepatitis (NASH). Although SFAs have been shown to affect the epigenome in whole blood, pancreatic islets, and adipose tissue in humans, and genome-wide DNA methylation studies have linked epigenetic changes to NAFLD and NASH, studies focusing on the association of SFAs and DNA methylation in human liver are missing. We, therefore, investigated whether human liver SFA content associates with DNA methylation and tested if SFA-linked alterations in DNA methylation associate with NAFLD-related clinical phenotypes in obese individuals. RESULTS: We identified DNA methylation (Infinium HumanMethylation450 BeadChip) of 3169 CpGs to be associated with liver total SFA content (q-value < 0.05) measured using proton NMR spectroscopy in participants of the Kuopio Obesity Surgery Study (n = 51; mean ± SD:49.3 ± 8.5 years old; BMI:43.7 ± 6.2 kg/m2). Of these 3169 sites, 797 overlapped with previously published NASH-associated CpGs (NASH-SFA), while 2372 CpGs were exclusively associated with SFA (Only-SFA). The corresponding annotated genes of these only-SFA CpGs were found to be enriched in pathways linked to satiety and hunger. Among the 54 genes mapping to these enriched pathways, DNA methylation of CpGs mapping to PRKCA and TSPO correlated with their own mRNA expression (HumanHT-12 Expression BeadChip). In addition, DNA methylation of another ten of these CpGs correlated with the mRNA expression of their neighboring genes (p value < 0.05). The proportion of CpGs demonstrating a correlation of DNA methylation with plasma glucose was higher in NASH-SFA and only-SFA groups, while the proportion of significant correlations with plasma insulin was higher in only-NASH and NASH-SFA groups as compared to all CpGs on the Illumina 450 K array (Illumina, San Diego, CA, USA). CONCLUSIONS: Our results suggest that one of the mechanisms how SFA could contribute to metabolic dysregulation in NAFLD is at the level of DNA methylation. We further propose that liver SFA-related DNA methylation profile may contribute more to hyperglycemia, while insulin-related methylation profile is more linked to NAFLD or NASH. Further research is needed to elucidate the molecular mechanisms behind these observations.


Assuntos
Hepatopatia Gordurosa não Alcoólica , Humanos , Adulto , Pessoa de Meia-Idade , Hepatopatia Gordurosa não Alcoólica/metabolismo , Metilação de DNA , Fígado/metabolismo , Obesidade/complicações , Obesidade/genética , Ácidos Graxos/metabolismo , Insulina/genética , DNA/metabolismo , RNA Mensageiro/metabolismo , Receptores de GABA/genética , Receptores de GABA/metabolismo
17.
Clin Epigenetics ; 15(1): 23, 2023 02 13.
Artigo em Inglês | MEDLINE | ID: mdl-36782224

RESUMO

BACKGROUND: Insulin resistance (IR) is a well-established factor for breast cancer (BC) risk in postmenopausal women, but the interrelated molecular pathways on the methylome are not explicitly described. We conducted a population-level epigenome-wide association (EWA) study for DNA methylation (DNAm) probes that are associated with IR and prospectively correlated with BC development, both overall and in BC subtypes among postmenopausal women. METHODS: We used data from Women's Health Initiative (WHI) ancillary studies for our EWA analyses and evaluated the associations of site-specific DNAm across the genome with IR phenotypes by multiple regressions adjusting for age and leukocyte heterogeneities. For our analysis of the top 20 IR-CpGs with BC risk, we used the WHI and the Cancer Genomic Atlas (TCGA), using multiple Cox proportional hazards and logit regressions, respectively, accounting for age, diabetes, obesity, leukocyte heterogeneities, and tumor purity (for TCGA). We further conducted a Gene Set Enrichment Analysis. RESULTS: We detected several EWA-CpGs in TXNIP, CPT1A, PHGDH, and ABCG1. In particular, cg19693031 in TXNIP was replicated in all IR phenotypes, measured by fasting levels of glucose, insulin, and homeostatic model assessment-IR. Of those replicated IR-genes, 3 genes (CPT1A, PHGDH, and ABCG1) were further correlated with BC risk; and 1 individual CpG (cg01676795 in POR) was commonly detected across the 2 cohorts. CONCLUSIONS: Our study contributes to better understanding of the interconnected molecular pathways on the methylome between IR and BC carcinogenesis and suggests potential use of DNAm markers in the peripheral blood cells as preventive targets to detect an at-risk group for IR and BC in postmenopausal women.


Assuntos
Neoplasias da Mama , Resistência à Insulina , Feminino , Humanos , Metilação de DNA , Glucose/metabolismo , Insulina/genética , Insulina/metabolismo , Resistência à Insulina/genética , Leucócitos/metabolismo , Fatores de Risco , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo
18.
Nat Commun ; 14(1): 1020, 2023 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-36823211

RESUMO

Impaired insulin secretion is a hallmark in type 2 diabetes mellitus (T2DM). THADA has been identified as a candidate gene for T2DM, but its role in glucose homeostasis remains elusive. Here we report that THADA is strongly activated in human and mouse islets of T2DM. Both global and ß-cell-specific Thada-knockout mice exhibit improved glycemic control owing to enhanced ß-cell function and decreased ß-cell apoptosis. THADA reduces endoplasmic reticulum (ER) Ca2+ stores in ß-cells by inhibiting Ca2+ re-uptake via SERCA2 and inducing Ca2+ leakage through RyR2. Upon persistent ER stress, THADA interacts with and activates the pro-apoptotic complex comprising DR5, FADD and caspase-8, thus aggravating ER stress-induced apoptosis. Importantly, THADA deficiency protects mice from high-fat high-sucrose diet- and streptozotocin-induced hyperglycemia by restoring insulin secretion and preserving ß-cell mass. Moreover, treatment with alnustone inhibits THADA's function, resulting in ameliorated hyperglycemia in obese mice. Collectively, our results support pursuit of THADA as a potential target for developing T2DM therapies.


Assuntos
Diabetes Mellitus Tipo 2 , Hiperglicemia , Células Secretoras de Insulina , Camundongos , Humanos , Animais , Diabetes Mellitus Tipo 2/genética , Insulina/genética , Camundongos Knockout , Estresse do Retículo Endoplasmático , Proteínas de Neoplasias
19.
Aging Cell ; 22(3): e13763, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36617632

RESUMO

Intronic single-nucleotide polymorphisms (SNPs) in FOXO3A are associated with human longevity. Currently, it is unclear how these SNPs alter FOXO3A functionality and human physiology, thereby influencing lifespan. Here, we identify a primate-specific FOXO3A transcriptional isoform, FOXO3A-Short (FOXO3A-S), encoding a major longevity-associated SNP, rs9400239 (C or T), within its 5' untranslated region. The FOXO3A-S mRNA is highly expressed in the skeletal muscle and has very limited expression in other tissues. We find that the rs9400239 variant influences the stability and functionality of the primarily nuclear protein(s) encoded by the FOXO3A-S mRNA. Assessment of the relationship between the FOXO3A-S polymorphism and peripheral glucose clearance during insulin infusion (Rd clamp) in a cohort of Danish twins revealed that longevity T-allele carriers have markedly faster peripheral glucose clearance rates than normal lifespan C-allele carriers. In vitro experiments in human myotube cultures utilizing overexpression of each allele showed that the C-allele represses glycolysis independently of PI3K signaling, while overexpression of the T-allele represses glycolysis only in a PI3K-inactive background. Supporting this finding inducible knockdown of the FOXO3A-S C-allele in cultured myotubes increases the glycolytic rate. We conclude that the rs9400239 polymorphism acts as a molecular switch which changes the identity of the FOXO3A-S-derived protein(s), which in turn alters the relationship between FOXO3A-S and insulin/PI3K signaling and glycolytic flux in the skeletal muscle. This critical difference endows carriers of the FOXO3A-S T-allele with consistently higher insulin-stimulated peripheral glucose clearance rates, which may contribute to their longer and healthier lifespans.


Assuntos
Glucose , Longevidade , Animais , Humanos , Proteína Forkhead Box O3/genética , Fatores de Transcrição Forkhead/genética , Fatores de Transcrição Forkhead/metabolismo , Insulina/genética , Insulina/metabolismo , Longevidade/genética , Fosfatidilinositol 3-Quinases/genética , RNA Mensageiro
20.
J Clin Invest ; 133(4)2023 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-36656641

RESUMO

Type 2 diabetes (T2D) is caused by insufficient insulin secretion from pancreatic ß cells. To identify candidate genes contributing to T2D pathophysiology, we studied human pancreatic islets from approximately 300 individuals. We found 395 differentially expressed genes (DEGs) in islets from individuals with T2D, including, to our knowledge, novel (OPRD1, PAX5, TET1) and previously identified (CHL1, GLRA1, IAPP) candidates. A third of the identified expression changes in islets may predispose to diabetes, as expression of these genes associated with HbA1c in individuals not previously diagnosed with T2D. Most DEGs were expressed in human ß cells, based on single-cell RNA-Seq data. Additionally, DEGs displayed alterations in open chromatin and associated with T2D SNPs. Mouse KO strains demonstrated that the identified T2D-associated candidate genes regulate glucose homeostasis and body composition in vivo. Functional validation showed that mimicking T2D-associated changes for OPRD1, PAX5, and SLC2A2 impaired insulin secretion. Impairments in Pax5-overexpressing ß cells were due to severe mitochondrial dysfunction. Finally, we discovered PAX5 as a potential transcriptional regulator of many T2D-associated DEGs in human islets. Overall, we have identified molecular alterations in human pancreatic islets that contribute to ß cell dysfunction in T2D pathophysiology.


Assuntos
Diabetes Mellitus Tipo 2 , Células Secretoras de Insulina , Ilhotas Pancreáticas , Humanos , Camundongos , Animais , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/metabolismo , Secreção de Insulina/genética , Insulina/genética , Insulina/metabolismo , Ilhotas Pancreáticas/metabolismo , Células Secretoras de Insulina/metabolismo , Oxigenases de Função Mista/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Fator de Transcrição PAX5/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA